Selecting a control for in vitro fertilization and acupuncture randomized controlled trials (RCTs): how sham controls may unnecessarily complicate the RCT evidence base

Eric Manheimer, M.S.

Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, Maryland

Objective: To examine the theoretical and methodologic rationales for the use of sham acupuncture controls in trials of adjuvant acupuncture for in vitro fertilization (IVF), and to identify the drawbacks of using a sham acupuncture control that may have its own effects on the pregnancy outcome.

Background: Acupuncture has typically been tested in trials that evaluate subjective, patient-reported outcomes such as pain. Ratings of pain and similar subjective states can be strongly influenced by respondents' judgments, preferences, and expectations about treatment benefits. Therefore, controlling for these expectations or "placebo effects" by using a sham acupuncture control group is critically important in trials of acupuncture for pain-related conditions. This need for sham acupuncture controls in trials of acupuncture for pain-related conditions may have led to the belief that sham acupuncture is always the most "rigorous" control, and that it should therefore be used for all acupuncture trials, including trials of adjuvant acupuncture for IVF.

Conclusion(s): In trials of adjuvant acupuncture for IVF, the outcome is pregnancy, which is entirely objective and unlikely to be affected by a patient’s expectations of a benefit of acupuncture. Because it seems unlikely that an IVF patient’s knowledge of whether she was receiving adjuvant acupuncture would affect her ability to become pregnant from IVF, using sham acupuncture to control for expectation/placebo effects seems unnecessary in this context. Even if adjuvant acupuncture were to increase IVF success rates only through a psychosomatic effect mechanism, such as by reducing stress, this stress-reduction effect would be integral to the working mechanism by which adjuvant acupuncture increases IVF pregnancy rates; therefore, it seems inappropriate to control for and separate out any such stress-reduction effect by using a sham control. Because of the risk that the sham is not an inert placebo but rather an active treatment that may affect the pregnancy outcome, using sham acupuncture as the control may unnecessarily confuse rather than clarify the interpretation of the effects of IVF adjuvant acupuncture. Using both theoretical concerns and epidemiologic evidence, researchers should carefully weigh the benefits and drawbacks of using sham acupuncture to blind patients in adjuvant acupuncture for IVF trials, and should question, rather than automatically accept, whether "placebo effects" are an important risk of bias in this context. (Fertil Steril® 2011;95:2456–61. ©2011 by American Society for Reproductive Medicine.)

Key Words: Acupuncture, bias, double-blind method, evidence-based medicine, in vitro fertilization, placebo effect, pregnancy rates, randomized controlled trials

Acupuncture has been used in China for centuries to regulate the female reproductive system (1). Several randomized controlled trials (RCTs) have tested whether adding acupuncture to the embryo transfer procedure increases the in vitro fertilization (IVF) pregnancy success rate. A randomized trial by Paulus et al. (2) was the first to test this hypothesis, by administering a session of acupunc-

Received April 5, 2011; revised April 11, 2011; accepted April 13, 2011; published online May 13, 2011.
E.M. has nothing to disclose.

Supported by grant number R24 AT001293-04 from the National Center for Complementary and Alternative Medicine (NCCAM) at the U.S. National Institutes of Health; grant awarded to the University of Maryland School of Medicine, Baltimore, Maryland. This paper’s contents are solely the responsibility of the author and do not necessarily represent the official views of NCCAM or the Cochrane Collaboration.

Reprint requests: Eric Manheimer, M.S., Research Associate, University of Maryland School of Medicine, Coordinator and Methodologist, Cochrane Collaboration Complementary Medicine Field, University of Maryland School of Medicine, Center for Integrative Medicine East Hall, 520 W. Lombard Street Baltimore, MD 21201 (E-mail: emanheimer@compmmed.umrn.edu).
reducing overall costs, and reducing the length and stress of the IVF procedure.

Since that meta-analysis, several new RCTs have been published, and many of these RCTs have included “sham” acupuncture as the control group. These sham-controlled RCTs have had heterogeneous designs (i.e., using various types of sham acupuncture as the control), and have had inconsistent results, with some RCTs showing the true acupuncture to be superior to the sham (5–7) and others showing the sham to be superior to the true acupuncture (8–11), and in one case the sham was statistically significantly superior to the true acupuncture (8).

The purpose of this methodologic review is to question why sham controls were used in these acupuncture for IVF trials; to provide an evidence-based analysis of whether sham acupuncture is the most appropriate control in this context; to review the potential problems with using a sham control that may not be inert; and finally to propose methods of pooling and analyzing the resulting database of trials to derive a clinically important message that could be useful for IVF practitioners and patients. The choice of control in these RCTs is not only of interest to IVF-acupuncture researchers, but is also of general relevance to researchers in assisted conception because it gets to the reasoning and evidence behind what constitutes “best evidence” and what is the most rigorous design for RCTs in IVF.

WHY HAVE SHAM ACUPUNCTURE CONTROLS BEEN USED IN ACUPUNCTURE TRIALS?

In acupuncture trials, sham acupuncture has often been used as the control. This is because acupuncture has typically been evaluated in RCTs with subjective, patient-reported outcomes such as pain. Such patient-reported, subjective outcomes can be largely influenced by judgments and expectations and therefore cannot be patented and sold by an individual, clinic, unlike pharmaceuticals and medical devices, is not a proprietary therapy, and therefore cannot be patented and sold by a trial. Physicians does not require the use of a sham control to patients as to be indistinguishable from true acupuncture, and yet at the same time not so similar to true acupuncture that the sham has a therapeutic effect of its own and is therefore not an inert placebo (13). This need for sham acupuncture controls in RCTs of acupuncture for pain-related conditions may have led to the belief that shams are the most “rigorous” control, and that they should therefore be used for all acupuncture trials (14).

IS THE RATIONALE FOR USING SHAM ACUPUNCTURE CONTROLS IN IVF TRIALS SUPPORTABLE ON THEORETICAL GROUNDS?

However, it is arguable whether the use of sham controls to blind patients to the treatment they receive and to guard against the placebo effect is relevant in the context of RCTs of acupuncture for IVF because IVF RCTs have entirely objective outcomes. That is, for RCTs with subjective, patient-assessed, self-reported outcomes such as pain, outcomes can be largely affected by judgments and expectations (12), but it seems much less likely that a patient’s knowledge of whether or not she was receiving acupuncture would affect her ability to become pregnant.

Some have argued that women in IVF trials need to be blinded to treatment assignment by using a sham control because the knowledge that a woman is receiving acupuncture may relax her, reduce her stress and anxiety levels, and thereby improve her chances of pregnancy (14, 15). A sham acupuncture control, it is argued, is necessary to equalize this stress reduction effect in both groups. The effect of stress on IVF outcomes is an extensively researched area, but findings have been inconsistent and difficult to interpret. Although some studies have suggested a possible association between stress levels and infertility (16), other studies (17) have found no evidence that psychologic stress had any influence on the outcome of IVF treatment. Suffice it to say that the association between stress and IVF success is controversial and unresolved; there is no conclusive experimental evidence that lower psychologic stress levels result in improved IVF outcomes (18), and it is even less well established that psychologic stress reduction interventions would either affect IVF outcomes or affect the biological processes (e.g., endogenous hormone release or blood flow to the uterus) that may impact on IVF outcomes. Even if a patient’s belief that she was receiving acupuncture improved her expectations and thereby reduced her psychologic stress levels, it seems unlikely that a belief or expectation of a benefit of acupuncture would have such a large physiologic stress-reducing effect (distinct from any biological effects of the acupuncture needles) as to increase her chances of pregnancy.

The comparison between acupuncture and sham acupuncture on pregnancy outcomes, though perhaps of some scientific interest, has little clinical relevance. That is, even if acupuncture were to cause pregnancy only through a psychosomatic mechanism, such as by reducing stress, the end result would still be a pregnancy or live birth, which is not just a placebo effect but a true clinically relevant benefit. Indeed, when a sham has effects that are part and parcel of the working mechanism of acupuncture (e.g., reduced anxiety), but without being a feasible alternative in clinical practice, you can learn little from sham-controlled trials. For clinically relevant conclusions, we need to compare a realistic alternative such as adjuvant acupuncture versus no adjuvant with IVF.

Blinding is used not only to prevent biased responses by patients (i.e., response bias) but also to prevent biased performance of health care providers (i.e., performance bias) (19). In this context, performance bias would mean that the embryo transfer physicians would perform the embryo transfer procedure better on the patients who were receiving acupuncture in order for the trial to find that acupuncture was a successful adjuvant procedure. However, considering the cost of the embryo transfer procedure and the importance of successful embryo transfers in maintaining high pregnancy rates at clinics, it would seem that the embryo transfer physicians would be motivated primarily to perform a successful embryo transfer for all patients rather than to show that acupuncture, a nonproprietary therapy, is an effective adjuvant procedure. Furthermore, the embryo transfer physicians and other researchers involved in the trial would not have a financial interest in the trial’s results. That is, positive results would be unlikely to result in direct financial gain to the physicians or individual clinics supporting and conducting the studies because acupuncture, unlike pharmaceuticals and medical devices, is not a proprietary therapy and therefore cannot be patented and sold by an individual, clinic, or company. Although blinding of embryo transfer physicians is probably not critical for reducing bias in IVF trials, it still seems fairly simple to do, and it should not be discouraged. However, blinding of physicians does not require the use of a sham control (20), which can increase the risk of bias of a trial’s results.
Blinding is also useful to prevent outcomes assessment bias. That is, blinding is useful to prevent the outcomes assessors from knowing which treatment groups patients were assigned to, as this knowledge can influence assessment of subjective outcomes. However, the issue of outcomes assessor blinding seems irrelevant in this context (21, 22), where the outcomes are entirely objective and clear-cut (i.e., pregnancy is either present or not). That is, the likelihood of a pregnancy diagnosis would not be affected by knowledge of the treatment assignment (acupuncture versus no acupuncture/sham).

Blinding can also be important in RCTs to ensure that the randomized groups received an equal amount of attention, care, and ancillary treatment (19). However, in this context, most of the RCTs randomize patients on the day of embryo transfer, which is the final step in the IVF cycle. Because the IVF cycle is completed at the point of embryo transfer, there is little opportunity for differential treatment or attention to be provided to patients after embryo transfer.

Finally, blinding can be important to avoid different levels of follow-up observations across treatment groups due to a greater enthusiasm among patients for a given treatment (e.g., acupuncture) relative to a different treatment/usual care control (23–26). However, in these IVF trials there are few to no losses to follow-up because the IVF clinic setting provides a captive patient population in which all women, regardless of randomization assignment or treatment received, are available to be examined to determine whether a pregnancy is present.

DO EXISTING METHODOLOGIC AND META-EPIEMIOLOGIC STUDIES ON THE PLACEBO EFFECT SUGGEST THAT SHAMS/PLACEBOS ARE NECESSARY FOR TRIALS WITH ENTIRELY OBJECTIVE OUTCOMES, SUCH AS RCTS OF ACUPUNCTURE FOR IVF?

Based on the theoretical considerations that have been described, we would not expect important differences in acupuncture’s effects on pregnancy outcomes depending on whether or not a sham acupuncture control group was used because all outcomes are entirely objective (i.e., pregnancy and births) and would not be expected to be largely affected by patient expectations and placebo effects.

However, ideally one would like to base the choice of control group on evidence from empirical research studies rather than a priori expectations. In that regard, several leading methodologists have conducted meta-epidemiologic studies that have examined the evidence for the placebo effect, for both subjective and objective outcomes. These studies suggest that the placebo effect is important for subjective but not objective outcomes measures. Namely, Hróbjartsson and Gøtzsche (28, 29) conducted a systematic review of RCTs in which patients were assigned to either placebo or no treatment (as well as an active treatment arm in some of the RCTs reviewed) to estimate the magnitude of the placebo effect. The reviewers found that a placebo can demonstrate a benefit over a “no treatment” control in studies with subjective outcomes such as pain, but that the placebo demonstrates no significant effect over a no treatment control in studies with objective outcomes.

More recently, Wood et al. (22) conducted a meta-epidemiologic study to examine whether lack of blocking (i.e., no placebo control) was associated with biased estimates of interventions’ effects in trials, and whether the association between lack of blocking and biased estimates varied depending on whether the outcome investigated was subjective or objective. These investigators found that there was indeed evidence of bias, suggested by exaggerated effect estimates, when there was a lack of blocking in trials assessing subjective outcomes, but that there was little evidence of bias associated with lack of blocking in trials assessing all-cause mortality or other objectively assessed outcomes. For the outcomes of pregnancy and birth, which are probably the most objective of all outcomes with the possible exception of mortality, we believe that there is a low risk of bias due to lack of blinding.

Kaptchuk et al. (30) conducted a methodologic study to specifically examine the placebo effect in the context of an acupuncture RCT. Their study provides empirical data on the placebo effect of acupuncture, on both subjective and objective outcomes. Specifically, they randomized patients to placebo oral pills or sham (placebo) acupuncture and compared these two groups on several different outcomes. Their study found that patients randomized to sham acupuncture reported less pain than patients randomized to placebo oral pills, suggesting that acupuncture has an enhanced placebo effect compared with oral placebo pills on subjective outcomes (i.e., patient-rated pain outcomes). This finding supports the idea that it is particularly critical to control for placebo effects in acupuncture trials that evaluate subjective outcomes such as pain.

However, the Kaptchuk study also found that the placebo effect was confined to self-reported, subjective outcomes (e.g., pain) and that there was no placebo effect (i.e., no improvement from baseline) for either the placebo acupuncture or placebo pill on the completely objective outcome that they measured (i.e., grip strength). Their findings suggest that an enhanced placebo effect of acupuncture, or indeed any placebo effect of acupuncture, is confined to subjective outcomes. Indeed, in their discussion, Kaptchuk and colleagues concluded, “That the differential placebo effect was confined to self reported measures (and not to grip strength) suggests an effect that may be confined to subjective outcomes.”

ARE SHAMS/PLACEBOS USED IN OTHER TRIALS OF SUBFERTILITY, AND HAVE LEADING SUBFERTILITY RESEARCHERS AND METHODOLOGISTS CONSIDERED A SHAM AS A CRITICAL DESIGN FEATURE FOR REDUCING BIAS IN THESE TRIALS?

In subfertility trials in general, where outcomes are entirely objective, blinding of either patients or physicians is “infrequently attempted” (31). More specifically, Arce et al. (31) point out in their review article on the methodologic issues in the design of efficacy trials of IVF that “double-blinding in assisted reproductive technology trials is infrequently attempted” because of the difficulties of implementing blinding in an IVF context. Arce and colleagues describe this in terms of gonadotropic trials, and they explain that “double-blinding in practice remains very difficult” because it would require that the “investigational drug would need to have indistinguishable primary packaging material compared to the approved comparator.” Yet developing similar packaging seems like a relatively minor difficulty compared with developing a sham procedure for acupuncture.

Leading IVF methodologists have not judged blinding to be a critical element for reducing bias in IVF trials (32). In the Vail and Gardener (32) review of common errors in the design and analysis of trials of subfertility, they did not even include lack of blinding as one of the nine prespecified design and analysis errors they evaluated. Vail and Gardener’s review found that only 2 out of 39 RCTs published in the two leading subfertility journals were free of important errors in design or analysis. As there is considerable room for improvement in subfertility trial design, IVF trialists should focus future efforts on correcting design flaws that can truly
bias results rather than being concerned with blinding status, which is unlikely to bias results. Other commentators (33, 34) have also not mentioned blinding or the need for a placebo as an important quality criterion for subfertility trials. Given that leading IVF methodologists have not considered blinding to be an important quality criterion for IVF trials in general, why should acupuncture for IVF trials be held to a different standard?

WHAT PROBLEMS CAN BE PRESENTED BY THE USE OF SHAMS?

If sham acupuncture were completely inert, then the use of a sham acupuncture control would not complicate the interpretation of the results of acupuncture for IVF trials. Indeed, for IVF adjuvant medications for which an inert placebo is easily developed (e.g., a placebo pill), blinding should be easy to accomplish, should not increase the risk of bias, and should not be discouraged. However, sham acupuncture may not be inert, and therefore the use of a sham control for IVF trials with purely objective outcomes (i.e., pregnancy, birth) may increase the risk of bias and may therefore unnecessarily confuse rather than clarify the interpretation of the effects of IVF adjuvant acupuncture. Indeed, if the sham is not an inert placebo but rather a different form of acupuncture with its own effects on the pregnancy outcome, then the results of sham-controlled trials will systematically deviate from the true value of what the trials are attempting to estimate.

How do we determine whether or not different types of sham acupuncture can affect trial outcomes? No consensus exists on how best to assess the effects of different types of sham acupuncture on outcomes, and no methods have been validated. Therapeutic effects of different types of sham acupuncture controls cannot be reliably estimated from meta-epidemiologic research. The reason for this is because if sham-controlled trials using shams that involve more active stimulation (i.e., needle insertion or stimulation of true acupuncture points) show smaller benefits of true acupuncture relative to sham acupuncture, there could be two possible interpretations for this finding: [1] “active” or intensive shams have physiologic activity that influences the outcome and therefore biases the effects of the trial toward the null or [2] shams that involve more active stimulation are the only shams that are believable to patients and only these shams fully and appropriately control for placebo effects and biased responses (25, 35). Therefore, although it would be difficult or impossible to generate conclusive epidemiologic evidence to show that shams have therapeutic effects on a pregnancy outcome or that different types of shams have different effects, we shall provide a justification from acupuncture research and theory of how the different types of shams used in acupuncture RCTs may have an effect on pregnancy.

One type of sham that has been used in four of the sham-controlled RCTs (7–9, 11) involved noninsertive but pricking “sham” needles placed at true acupuncture points; these sham needles gave patients a pricking or penetrating sensation on their skin indistinguishable from that of a true acupuncture needle (8, 9, 11, 36) throughout the duration of the acupuncture session. Such sham needles may be likely to influence the pregnancy outcome because the type of stimulation these shams apply is comparable to applying acupuncture to the acupuncture points. Acupressure is a traditional form of acupuncture that has been shown in RCTs and systematic reviews to be an effective treatment for various conditions (37–39). A recent positron emission tomography study has indicated that noninsertive but pricking sham needles placed at true acupuncture points can stimulate regions of the brain associated with natural opiate and neurotransmitter production (40). These pricking but noninsertive sham needles may also have effects on the postulated acupuncture points similar to the effects of superficial needle penetration—a common technique in many authentic traditional Japanese acupuncture styles (41). The reason for this is because both superficially inserted needles and noninsertive but pricking sham needles would both be likely to stimulate the acupuncture points. If the research question of interest focused on the potential working mechanism of acupuncture and whether inserting needles at acupuncture points or applying pressure at acupuncture points resulted in greater efficacy, then this sham control would be appropriate. However, the research question of greatest interest is the effectiveness of acupuncture in everyday practice; in this context, using this type of sham control does not seem most appropriate.

Other sham-controlled trials of acupuncture for IVF have used shams that involved real needle insertion at true acupuncture points, but at points traditionally used to treat conditions unrelated to fertility, such as back pain (5). The reason that such shams would be likely to influence the pregnancy outcomes is because any type of true acupuncture point selection that is traditionally used for treating a specific condition may have not only a specific effect on the targeted condition but also a generalized adaptogenic or salutary effect; therefore, the selection may also be beneficial for other conditions, according to acupuncture theory (1, 42).

Finally, other sham-controlled trials used shams that involved needle insertion not directly on but near the true acupuncture points (10). These shams may have an effect on the pregnancy outcome because the location of the acupuncture points may not be as precisely defined as acupuncture tradition suggests (43), and stimulation in areas near the “true” points may result in therapeutic activity. Indeed, physiologic effects of needle penetration, even if the needles are inserted at nonacupuncture points, is suggested by several lines of research in human beings (42, 44, 45) as well as in animal studies which have shown that needle insertion can have nonspecific analgesic effects through a postulated mechanism of “diffuse noxious inhibitory control” (46). The physiologic effects of this non-acupuncture-point needle insertion sham may influence the pregnancy outcome through two of the postulated mechanisms through which acupuncture may influence IVF success. [1] The needles may stimulate natural opiate production, which may inhibit the central nervous system outflow and the biological stress response (47) and thereby promote a successful embryo transfer. [2] The needles may stimulate the release of neurotransmitters (48), which may in turn stimulate secretion of gonadotropin-releasing hormone (GnRH), thereby influencing the menstrual cycle, ovulation, and fertility (49).

HOW CAN THE CURRENT EVIDENCE BASE BE INTERPRETED, AND HOW SHOULD IT BE ANALYZED?

As previously discussed, in many of the RCTs of acupuncture for IVF, the shams may not have been inert placebos but rather different forms of acupuncture or acupressure. These trials may in fact have been comparing two different forms of acupuncture, which made them inappropriate for addressing the question of interest: whether IVF adjuvant acupuncture is helpful in increasing pregnancy rates. The complications in analyzing these trials are compounded by the fact that the different “sham” controls may have had different effects on pregnancy, with some shams affecting the pregnancy outcome and others not. A systematic review of these trials may not be helpful in clarifying the potential role of acupuncture in IVF.

However, there is also a substantial database of controlled trials with no adjuvant treatment, and pooling the data from those trials...
may be useful for estimating the average effect of acupuncture on IVF success rates and examining the impact of potential trial-level modifiers (e.g., number of acupuncture treatments in the trial, or the baseline pregnancy rate in the trial) on acupuncture’s success rate, and thereby facilitate an individual-level effect for patients undergoing IVF. An IPD would also provide a high-quality international evidence base to better inform practice, research, and debate.

CONCLUSION
My purpose is certainly not to argue against blinding and the use of placbos in RCTs with patient-reported outcomes. Indeed, in the context of acupuncture for pain trials, blinding is considered to be the most important interval validity criterion for reducing the risk of bias (25). Nor is it my purpose to argue against blinding of embryo transfer physicians, which is unlikely to introduce bias and may even slightly reduce bias. Rather, I argue only that researchers should carefully weigh the benefits and drawbacks of using sham acupuncture to blind patients in IVF trials, using both theoretical concerns and epidemiologic evidence. Researchers should question, rather than automatically accept, whether “placebo effects” are an important risk of bias in this context, as many RCTs and systematic review publications have suggested (8–10) and concluded (52). The question about the need for sham controls may also apply to other invasive, difficult to blind adjuvant procedures evaluated in IVF RCTs (53).

Only by having access to RCTs without critical errors in design (32) can systematic reviewers reliably analyze and interpret these RCTs to draw evidence-based conclusions that can be useful to the physicians who are treating the patients undergoing IVF.

Acknowledgments: The author thanks L. Susan Wieland for her helpful comments and suggestions on the abstract and narrative capsule, and Lex Bouter and Brian Berman for conversations related to some of the topics discussed in this paper, and Danielle A. W.M. van der Windt for helpful comments and suggestions on the manuscript.

REFERENCES
33. Barlow DH. The design, publication and interpretation of research in subfertility medicine: uncomfortable issues and challenges to be faced. Hum Reprod 2003;18:899–901.
34. Dickey RP. Clinical as well as statistical knowledge is needed when determining how subfertility trials are analysed. Hum Reprod 2003;18:2495–8.